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Abstract—To take full advantage of the considerably high
reporting rate of phasor measurement units (PMU) data, this
paper develops a novel PMU-based event detection methodol-
ogy. Considering the huge amount of streaming PMU data, a
data compression algorithm, swinging door trending (SDT), is
first used to compress the PMU data and generate multiple
compression intervals. Then dynamic programming is utilized to
solve the optimization problem, which is recursively constituted
by a score function. Based on predefined PMU event rules,
dynamic programming merges adjacent compression intervals
with the same slope direction. Finally, all the PMU event features
are characterized. A conventional wavelet-based event detection
method is compared with the developed dynamic programming
based SDT (DPSDT) method. Numerical simulations on the real-
time and synthetic PMU data show that the DPSDT method
can accurately detect the start-time of an event and the event
placement with relatively high precision. Also, the PMU event
features, including the magnitude and duration of strokes, are
characterized.

Index Terms—Dynamic programming, phasor measurement
unit (PMU), swinging door trending, wavelet.

I. INTRODUCTION

W ITH the wide implementation of wide area measure-
ment systems (WAMS) in the last decade, phasor

measurement units (PMUs) are able to provide measurements
of electrical signals such as the voltage, current and frequency
for control room applications. Signals measured by PMU are
expected to have a considerably precise reporting rate, which
can be 30-120 times per second [1], [2] (e.g., 30 Hz in [3],
50 Hz in [4], 60 Hz in [5], 100 Hz in [6]). Real-time PMU
event detection can contribute to numerous applications in
power system operations, such as the wide-area protection,
state estimation, closed-loop control, and dynamic monitoring.
Since the artificially simulated power system models cannot
be absolutely accurate compared to the real systems, PMU-
based applications are increasingly attractive as “model-free”
methods [7]–[10].

There have been significant research contributions on the
PMU-based event detection in recent years [11]–[13]. Gen-
erally, the event detection methods can be divided into two
categories: statistical analysis and signal processing methods.
As for statistical analysis methods, Xie et al. [3] utilized the
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principal component analysis (PCA) to reduce the dimension-
ality of the original streaming PMU data. Guo et al. [14]
presented the PCA method for islanding detection using the
PMU data for system monitoring. Gadde et al. [15] combined
the PCA and discrete cosine transform to compress the critical
disturbance information of PMU data with high fidelity. Bhui
et al. [16] utilized the recurrence quantification analysis (RQA)
to locate power system events. Biswal et al. [17] adopted the
k-nearest neighborhood (kNN) to select the best set of features
of the disturbance types in the time-frequency domain. As for
signal processing methods, Kim et al. [5] presented a wavelet-
based detection algorithm on discrete samples of collected
PMU data. Jena et al. [18] utilized the empirical model
decomposition (EMD) to assess the power system disturbance
by using wide-area postdisturbance records. However, the
performance of the current PMU event detection methods
highly depends on the size of the sample length of moving
windows. These methods cannot show the precise start-time of
PMU-based events. This may lead to the loss of the detailed
information between moving windows and cannot take full
advantage of the considerably high reporting rate of PMU data.

Recently, to avoid the computational complexity, data com-
pression techniques have been used to process the huge
streaming amount of PMU data. Zhang et al. [6] utilized the
swinging door trending (SDT) compression method to design
an adapted protocol for WAMS. Sousa et al. [19] presented
the singular value decomposition to compress the real data
from metering devices at different substations. However, these
papers mainly focus on data compression and do not solve the
event detection problem.

For PMU event detection, it is important to identify the
start-time of a system event for power system analysis. The
precise detection of the event start-time can help operators
take timely measures so that both voltage and frequency can
present slight fluctuations. A pre-detected start-time of an
event would cause false alarms with unnecessary operations,
which possibly decreases the economic benefits of power
systems. A post-detected start-time of an event would do
severe damage to electrical equipments, which decreases not
only economic benefits but also reliability benefits of power
systems. To bridge the gap in the PMU-based event detection,
this paper seeks to address two critical questions for power
system operators. Is it possible to determine the precise start-
time information of one PMU event? How to characterize
PMU-based events so that operators can make more effective
measures to mitigate them. To this end, this paper develops
a novel PMU-based event detection method, i.e., dynamic



IEEE TRANSACTIONS ON POWER SYSTEMS, 2018 2

Time

P
M

U
 D

a
ta

 V
a

lu
e

A B C

 ε

D E F G H I

Compression 
Interval 1

Compression 
Interval 2

Compression 
Interval 3

Compression 
Interval  4

Start/End Points
Compressed Points

PMU Data

Door Width

Fig. 1. Schematic of the SDT algorithm.

programming-based SDT (DPSDT), to identify events and
characterize their features. The main contributions of the
developed method are that: (i) it can accurately detect the
start point of a PMU-based event; and (ii) it can also reduce
the false alarms that are challenge for most of state-of-the-art
methods. The specific tasks of this paper include: (i) using
the SDT compression method and dynamic programming to
precisely detect the start-time and placement of PMU-based
events; and (ii) characterizing the event features of magnitude
and duration through the first downward and upward strokes.

The organization of this paper is as follows. In Section II,
the SDT compression method is briefly introduced. Section III
presents the recursion methodology of dynamic programming
based on the SDT compression intervals. Section IV described
the evaluation metrics to validate the effectiveness of DPSDT.
Case studies and result analysis performed on publicly real-
time and synthetic PMU data are discussed in Section V.
Concluding remarks are summarized in Section VI.

II. SWINGING DOOR TRENDING

The SDT compression method has been widely used to com-
press the PMU data for the WAMS [6] and the smart meters
data in electrical distribution systems [19]. This algorithm is
originally proposed by Bristol [20] for data compression and
recently used in power systems. It is based on the concept of
a “swinging door” with a “hinge” or “pivot point” whenever
the next point in the time series causes any intermediate
point to fall outside the area partitioned by the compression
interval bounds. The compression interval bounds are defined
by the door width (ε), which is the only tunable parameter
in the SDT. As can be seen in Fig. 1, multiple compression
intervals are segregated by the SDT algorithm. Taking the first
compression interval as an example, A is first set as the start
point and C is stored as the end point by the SDT blanket
A–D. Then, points A, B, and C are represented by the straight
line from A to C. Finally, points B, D, and F are compressed
inside the compression bounds determined by points C, E, G,
respectively. The compression intervals are segregated as A–C,
C–E, and E–G.

III. DYNAMIC PROGRAMMING BASED SDT

Based on the segregated compression intervals, a dynamic
programming approach is used to detect the PMU-based event
from the perspective of constituting an optimization model.
The main idea is to merge adjacent compression intervals that
have the same slope direction into one combined compression
interval. The PMU-based event is detected by the predefined
event rules: the magnitude rule and the slope rate rule, which
are described in Section III-A. Then the maximum objective
function is built and solved by the dynamic programming
method via a score function in Section III-B.

A. PMU Event Rules

1) Definitions of Magnitude and Slope Rate Rules: The
PMU-based event rules are predefined by users and required
for the developed detection method. Generally, one PMU
event consists of upward and downward strokes, i.e., E =
{ST1, · · · , STm, · · · }, where STm = (sm, em) represents
the mth stroke with the corresponding start (sm) and end
(em) points. Taking the frequency data as an example, the
PMU-based event with a downward stroke first occurring is
usually caused by the abrupt lack of positive power such as
unexpected generator tripping events. The PMU-based event
with an upward stroke first occurring is usually caused by the
abrupt lack of positive load such as unexpected load shedding
events. The magnitude rule checks whether the magnitude has
increased (or decreased) by a specified threshold, Trmag, and
defined as:

Rmag = 1, if |psm − pem | > Trmag (1)

The slope rate rule checks whether the rate of increase (or
decrease) is greater than a specified threshold, Trslo, given by:

Rslo = 1, if (|psm − pem |)/(em − sm) > Trslo (2)

where p represents the measured PMU data.
2) Determination of Magnitude and Slope Rate Thresholds:

Both the magnitude threshold in (1) and slope rate threshold
in (2) can be automatically determined from the historical
measured dataset of voltage and frequency under the normal
operating condition. First, operators can readily gather the
maximum magnitude MNorm

max and slope rate SNorm
max from the

normal operating dataset. However, due to the impact of the
ambient noise, the maximum magnitude and slope rate may
change along with the corresponding normal operating dataset
that operators choose. Thus, a tolerance value is added and de-
fined as a small proportion of the maximum magnitude MNorm

max

and slope rate SNorm
max . Finally, we can get the formulations of

the magnitude and slope rate thresholds, given by:

Trmag = MNorm
max + φmag ×MNorm

max︸ ︷︷ ︸
Tolerance V alue

(3)

Trslo = SNorm
max + φslo × SNorm

max︸ ︷︷ ︸
Tolerance V alue

(4)

where φmag and φslo are the tolerance coefficients of the
magnitude and slope rate thresholds, respectively. Based on
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the experimental experience, φmag and φslo can be chosen in
the range of 10%–20%.

B. Dynamic Programming

Dynamic programming is a method for solving a complex
problem by breaking it down into a collection of simpler
subproblems [21]. The compression intervals detected by
SDT comply with the same event rules, as described in
Section III-A.

First, the compression intervals that satisfy the ramp rules
are rewarded by a score function; otherwise, their score is set
to zero. An increasing length score function S is designed
based on the length of the intervals segregated by the SDT.
Given a time interval (i, j) of discrete time points of PMU
data and a time point k located into this interval (i.e., i < k <
j), the score function should conform to a super-additivity
property, given by:

S(i, j) > S(i, k) + S(k, j), ∀k : i < k < j (5)

A family of score functions can satisfy this property. In this
paper, the score function presented in [22], [23] is adopted
and given by:

S(i, j) = (i− j)2 ×R(i, j) (6)

where R(i, j) represents the magnitude rule in (1) and the
slope rate rule in (2), i.e., R ∈ {Rmag, Rslo}. Then, an
objective function J is constituted according to the dynamic
programming, given by:

J(i, j) = max
i<k<j

[S(i, k) + J(k + 1, j)] (7)

Based on (5)–(7), the process of solving the optimization
problem can proceed recursively as follows. Assuming that
the number of strokes is M , the PMU data event con-
sists of multiple upward and downward strokes, i.e., E =
{ST1, · · · , STm, · · · }; and compression intervals of the PMU
data under normal operations do not present any strokes, i.e.,
E =

{
ST1, · · · , STm, · · ·

}
. For the mth compression interval

without strokes, i.e., STm = (sm, em), the event rules, the
score function, and the objective function of the dynamic
programming can respectively be calculated as:

Rmag (i, j) = Rslo (i, j) = 0, ∀i, j : sm < i < j < em (8)

S (i, j) = 0, ∀i, j : sm < i < j < em (9)

J∗ (sm, em) = 0, ∀m : 1 ≤ m < M (10)

For the mth compression interval with a PMU data event,
i.e., STm = (sm, em), the event rules, the score function,
and the objective function of the dynamic programming can
respectively be calculated by:

Rmag (i, j) = Rslo (i, j) = 1, ∀i, j : sm < i < j < em
(11)

S (i, j) = (i− j)2, ∀i, j : sm < i < j < em (12)
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Fig. 2. Comparison of a PMU data event with and without anomaly.

J∗(sm, em)= max
sm<k1<em

S(sm, k1)+J (k1+1, em)

= max
sm<k1<em

S(sm, k1)+ max
k1+1<k2<em

S(k1+1, k2)

+· · ·+ max
ki−1+1<ki<em

S(ki−1+1, ki)+J(ki+1, em)

= max
sm<k1<k2<···<ki−1<ki<em

S(sm,k1)+S(k1+1,k2)

+· · ·+S(ki−1+1, ki)+S(ki+1, em)
(13)

Assuming that a given PMU data series
{ps1 , · · ·, psm , · · ·, ps1 , · · ·, psm , · · ·, peM } starts without
strokes at the beginning and can be presented as
Θ =

{
ST1, · · ·, STm, ST1, · · ·, STm, · · ·, STM

}
, the solution

to (7), J∗ (sm, eM ), for the mth compression interval without
strokes is expanded in (14), where this recursive process
using the dynamic programming is stopped until ki = eM −1.
Considering (9) and (10), the objective J∗ (sm, eM ) can be
transformed to the objective J∗ (sm+1, eM ) of the (m+ 1)th
compression interval with strokes, given by:

J∗ (sm, eM ) = max
sm<k1<k2<···<ki−1<ki<eM

J (ki, eM )

= J∗ (sm+1, eM )
(15)

where the objective J∗ (sm+1, eM ) is induced
by (16). Considering the super-additivity in (5), the
final detected event sequence of PMU data series
{ps1 , · · ·, psm , · · ·, ps1 , · · ·, psm , · · ·, peM } is solved as:

J∗ (s1, eM ) =
∑M

m=2 S (sm, em) (17)

C. Anomaly Processing

During the recursion of dynamic programming, one of
the more interesting findings is the occurrence of abnormal
compression intervals [24], which are termed as “anomaly” in
this paper and set as A(i, j). The characteristics of an anomaly
are the inverse tendency, small magnitude, and short duration,
as shown in Fig. 2. An upward anomaly occurs between two
downward strokes and makes the recursion of the dynamic
programming abruptly break according to the strict super-
additivity property in (5). The anomaly rule is first predefined
based on experimental experiences. Similarly with PMU-based
event rules, the magnitude of one anomaly cannot be greater
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J∗ (sm, eM ) = max
sm<k1<eM

[S (sm, k1) + J (k1 + 1, eM )]

= max
sm<k1<eM

{
S (sm, k1) + max

k1<k2<eM
[S (k1, k2) + J (k2 + 1, eM )]

}
= max

sm<k1<eM

{
S (sm, k1) + max

k1<k2<eM

{
S (k1, k2) + · · ·+ max

ki−1<ki<eM
[S (ki−1, ki) + J (ki + 1, eM )]

}}
= max

sm<k1<k2<···<ki−1<ki<eM
[S (sm, k1) + S (k1, k2) + · · ·+ S (ki−1, ki)] + max

ki−1<ki<eM
J (ki + 1, eM )

(14)

J∗ (sm+1, eM ) = max
sm+1<k1<eM

[S (sm+1, k1) + J (k1 + 1, eM )]

= max
sm+1<k1<eM

{
S (sm+1, k1) + max

k1<k2<eM
[S (k1, k2) + J (k2 + 1, eM )]

}
= max

sm+1<k1<eM

{
S (sm+1, k1) + max

k1<k2<eM

{
S (k1, k2) + · · ·+ max

ki−1<ki<eM
[S (ki−1, ki) + J (ki + 1, eM )]

}}
= max

sm+1<k1<k2<···<ki−1<ki<eM
[S (sm+1, k1) + S (k1, k2) + · · ·+ S (ki−1, ki)] + max

ki−1<ki<eM
J (ki + 1, eM )

(16)

than TrAnom
mag . The duration of one anomaly cannot be longer

than TrAnom
dur . The mathematical formulation is given by:

A(i, j) =

{
1, if |pi − pj | < TrAnom

mag ∩ |j − i| < TrAnom
dur

0, if not
(18)

where TrAnom
mag and TrAnom

dur are determined by the experimental
experience. TrAnom

mag is chosen in the range of 0.03–0.05, and
TrAnom

dur is chosen in the range of 0.3–0.5.
To avoid the impact of anomalies, anomalies are detected

and merged into the adjacent strokes by improving the score
function in (6), formulated as:

S(i, j) = (i− j)2 × [R(i, j) +A(i, j)] (19)

Given the nth anomaly An and adjacent strokes
STn and STn+1, the PMU data can be depicted as
Θ = {· · · , STm, A, STm+1, · · · }, where STn=(sn, en),
STn+1=(sn+1, en+1), and An=(en+1, sn+1−1). Finally,
both the anomaly and adjacent strokes are combined into one
significant stroke, given by:

(sn, en)← (sn, en+1) (20)

where the total number of strokes is reduced to M -N . N is
the total number of anomalies.

The compressed PMU data processed by SDT is split
into multiple overlapping moving windows. The length of
each window must be longer than the longest duration of
strokes, which can be characterized by the statistical analysis
of distributions of stroke features. Assuming that the window
length is WL and the overlap between adjacent windows is
WO, the start and end indices of the ith window are given by:

sW,i = (i− 1) · (WL −WO) (21)

eW,i = i ·WL − (i− 1) ·WO (22)

The application of DPSDT will yield the set of strokes
of PMU-based events for each windowed PMU data signal,
i.e., STsW,1:eW,1 , · · · , STsW,i:eW,i , · · · , STsW,M :eW,M . The longest

Algorithm 1: Dynamic Programming Based Swinging
Door Trending Algorithm

1 Compressing PMU data p by SDT into L intervals:
2 L← length(p)
3 Initializing score function of zero length intervals:
4 for Iteration n from 1 to L do
5 J (n, n)← 0
6 end
7 Computing maximum scores for intervals in the same

direction based on PMU event rules:
8 for Iteration n from 2 to L do
9 for Iteration i from 1 to (L−n+1) do

10 j ← i+ n− 1
11 for Iteration k from i to (j−1) do
12 Anomaly processing:
13 for Iteration ii, kk from i to k do
14 if |pii−pkk|<0.05∩|kk−ii|<0.5 then
15 S(i, k)← (i−k)2×[R(i, k)+A(i, k)]
16 else
17 S(i, k)← 0
18 end
19 end
20 q ← S(i, k) + J(k, j)
21 Saving indices until maximum scores:
22 if q < J(i, j) then
23 J(i, j)← q; K(i, j)← k
24 end
25 end
26 end
27 end

strokes are determined by merging the strokes that are located
in the overlap of adjacent windows.

D. Procedure of the Developed DPSDT Method

To solve the optimization problem constituted in (7), a
simple standard recursion is given in Algorithm 1 with pseu-
docode. The flowchart of the developed PMU-based event
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Fig. 3. Flowchart of the developed PMU-based event detection methodology.

detection methodology is shown in Fig. 3. Three major steps
are briefly summarized, including:
• Step 1: The real-time or synthetic PMU data is first com-

pressed into multiple compression intervals using the SDT.
• Step 2: Based on the PMU event rules, dynamic pro-

gramming combines compression intervals with the same
slope direction. If intervals do not conform to event rules,
anomalies are identified and combined to the score function.
Then, the objective with the maximum score is obtained.

• Step 3: The set of significant strokes are detected and
combined as the final detected PMU events. Evaluation
metrics introduced in the following section are calculated
based on the detected events for mining more practical
information, such as the event placement.

IV. EVALUATION METRICS FOR COMPARISON

A. Metrics I

For the simplicity of comparison, the normalized wavelet
energy (NWE) is used to validate the effectiveness of the
developed DPSDT method. NWE is defined to calculate the
root mean square value of detailed wavelet coefficients in
a moving window. Detailed information about NWE can be
found in [4], [5]. The formulation is given by:

NWE (i;NW, NL, NC)=
MWE (i;NW, NL, NC)

MWE (i;NW, NH, NC)
(23)

where i is the data point in the designed moving window
and i = 1, 2, · · · , NW. NW is the number of samples in the
moving window. NL is the number of wavelet decomposition
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Fig. 4. Detection results of measured PMU data of frequency with a
significant trip event at the Harris substation.

levels. NC is the number of coefficients in each decomposition
level. NH is the total number of samples in one hour. MWE
is the modified wavelets energy (MWE) metric, given by:

MWE (i;NW, NL, NC) =

√√√√ 1

NW

NL∑
j=1

NC∑
k=1

|dj,k (i)|2 (24)

where dj,k is the detailed coefficient calculated by the inner
product between the signal and wavelet function, which can
be obtained by the wavelet decomposition. There are multiple
wavelet families for designed mother wavelets. In this paper,
the typical Daubechies wavelet “DB 1” is deployed for case
studies because the “DB 1” wavelet presents the highest time-
localized wavelet among all Daubechies wavelet series [5].
The window length NW is set as 16 samples (≈0.53 s). The
number of wavelet decomposition levels NL is set as 3.

B. Metrics II

Another set of metrics is used to evaluate the performance
of fault clearance using different detection methods. According
to Ref. [25], the security limit of maximum voltages should
be less than 1.1 p.u.. Thus, the rate of buses with out-of-
limit voltage (ROLV ) is defined as the number of buses
with out-of-limit voltage accounting for the total number of
buses in the system. In addition, the security and quality
of supply standards (SQSS) [26] requires frequency change
to be maintained within ±0.2 Hz of the nominal frequency.
Thus, the rate of buses with out-of-limit frequency (ROLF )
is defined as the number of buses with out-of-limit frequency
accounting for the total number of buses. Another two metrics
are defined as the mean time of the maximum bus voltage
(MTMV ) and mean time of the maximum bus frequency
(MTMF ) during the restoration process. Overall, smaller
ROLV and ROLF mean that the system can keep a more
secure operation after using control actions, while smaller
MTMV and MTMF mean that the system can restore to
its normal operating condition more quickly.
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V. CASE STUDIES AND RESULTS

A. PMU Data Description and Preprocessing

Two different sets of realistic and synthetic PMU data
are utilized to illustrate the efficacy of the developed de-
tection method. First the real-world synchrophasor data of
the Texas Synchrophasor Network [27], [28] was sampled at
four PMU locations at McDonald Observatory (MCD, West
Texas), Harris (Austin), Baylor (near Dallas), and University
of Texas Pan American (UTPA, South Texas), respectively.
The PMU data spans from 11:00:00 PM to 12:00:00 PM on
July 10th 2016. PMUs are used to collect the synchrophasor
data of the frequency with a 30 Hz sampling rate. The second
synthetic PMU data is generated by the Siemens PSS/E 23-bus
system [29] with ground fault events on each bus. The PMU
data consists of frequency, voltage, active/reactive power, and
phase angle. Overall, the first dataset is used to verify the
effectiveness of the developed DPSDT method, and the second
dataset is used for statistical analysis. All the PMU data are
preprocessed and normalized by:

p̃ = (p− pmin)/(pmax − pmin) (25)

where pmin and pmax are the minimum and maximum values
of the measured PMU data, respectively. p̃ is the normalized
value of the PMU data.

B. Detailed Analysis of one PMU Location

To verify the effectiveness of the developed DPSDT method,
another method that has been widely used for the PMU event
detection [4], [5] is adopted for comparison. The information
on the two methods is described as follows:

• Method 1: wavelet-based event detection (WED) method
based on the NWE metric.

• Method 2 (proposed): dynamic programming-based
swinging door trending (DPSDT) method.

Fig. 4 shows the detection results by using the developed
DPSDT method for the frequency data at the Harris substation.
The door width of the SDT is set as 0.02 p.u. As can be seen,
the power system is operated under normal circumstances
during the first half part of the signal though some slight
fluctuations occur. As for the latter half part of the signal, there
is a trip event of frequency with a significant downward stroke
in a very short time. The stroke magnitude can be roughly
estimated as over 0.7 p.u. This strip of frequency signal is
mainly caused by the real power event, such as generator
trips or automated control. To precisely detect this event,
the developed DPSDT method first segregates the frequency
signal into multiple compression intervals marked by the green
rectangles. Then, a pair of downward (see the solid blue line)
and upward (see the solid red line) strokes are identified
by the dynamic programming using the signal of SDT-based
compression intervals (see the dashed green line).

Fig. 5 shows detailed coefficients that are relevant to d0, d1,
and d2. Comparing coefficients with the original frequency
signal in Fig. 4, there is a significant decrease through d0,
d1, and d2 for the 19th segment by using both WED and
DPSDT. This coefficients decrease is caused by the change
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TABLE I
COMPARISON OF START-TIMES OF THE PMU-BASED EVENT AT

MULTIPLE SUBSTATIONS

Substations WED in [4], [5] DPSDT (proposed)

Minute Second Minute Second

Harris 54 22.79 54 22.6999
MCD 54 22.79 54 22.5333
Baylor 54 22.26 54 22.5667
UTPA 54 22.79 54 22.9001

in the frequency signal. From the observation of coefficients,
WED also shows some changes at the latter part of the 19th

segment, which may mislead users to detect the fake PMU
event as the real one. Whereas DPSDT can clearly present the
significant coefficients change. For a better illustration, Fig. 6
compares the NWE metrics calculated by WED and DPSDT,
respectively. The NWE signal using WED shows a significant
increase but with too much noise, which makes it challenging
to detect the exact PMU event. The NWE signal using DPSDT
can clearly present a significant increase and help users readily
locate this event.
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TABLE II
EVENT FEATURES DETECTED AT MULTIPLE PMU SUBSTATIONS

Event Features Harris MCD Baylor UTPA

Magnitude
[Hz]

Down Stroke 0.1843 0.1759 0.1781 0.1940
Up Stroke 0.0673 0.0989 0.0981 0.0789

Duration
[s]

Down Stroke 5.1333 3.7001 4.0667 4.3667
Up Stroke 5.9001 16.9667 17.0667 6.4333

Slope
[Hz/s]

Down Stroke 0.0359 0.0475 0.0438 0.0444
Up Stroke 0.0114 0.0058 0.0057 0.0123

t [s]

Start-Times detected 

by Method 1

Start-Times detected 

by Method 2

22.79 23.3222.26

22.6999

22.9001
22.5333

22.5667

23.85

Fig. 7. Comparison of start-times of the PMU-based event at four substations.

C. Results and Analysis of Multiple PMU Locations

The most important advantage of the developed DPSDT
method is that it can detect a PMU-based event with a high
time resolution. Table I compares the start-time of the PMU-
based event at four substations. As can be seen, both WED
and DPSDT can detect this event at the minute level, i.e.,
54 min. However, with regard to the second level, WED can
only detect a PMU event occurring at either 22.79 s or 22.26
s. It cannot detect any detailed start-time information with
a higher time resolution. This is because WED utilizes the
NWE metric which is calculated by the moving window with
the length of NW = 16 samples (≈0.53 s). The start-time
detected by WED can only be determined as n×NW, where
n is a positive integer. This finding can be clearly illustrated
by Fig. 7. Overall, it indicates that the WED method cannot
adapt to the PMU data with a considerably high reporting
rate, which has been significantly updated by advanced PMU
equipments in recent years.

Another important advantage of the DPSDT method is that
it can characterize the main PMU event features, including
the magnitude, duration, and slope of the downward and
upward strokes. However, it is very challenging for the WED
to provide information on these event features for power
system operators. Table II shows the numerical results of
different PMU event features at four substations. In this case
study, the downward and upward stroke magnitudes are in
the ranges of 0.17–0.20 Hz and 0.06–0.10 Hz, respectively.
The downward and upward stroke durations are in the ranges
of 4.06–5.14 s and 5–18 s, respectively. The downward and
upward stroke slopes are in the ranges of 0.03–0.05 Hz/s
and 0.005–0.013 Hz/s, respectively. Most event features are
with relatively robust variations of standard deviations 0–0.6.
Whereas the upward stroke duration presents a large variation
of standard deviation 6.27. Generally, the downward stroke
represents the event generating process and the upward stroke
represents the event recovery process. Hence, it is possible to
accurately characterize the event generating process by using
the developed DPSDT method. Whereas it is still challenging
to characterize the event recovery duration, which highly
depends on different event clearing measures.
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Fig. 9. Comparison of the fault clearance using different detection methods
on five representative buses.

D. Analysis of PMU Event Features

Assuming that bus fault events are preset at 81 s in the
simulated Siemens PSS/E 23-bus system, there are totally 23
fault events separately simulated on each system bus and 197
channels (for each bus: 23×3 voltage, angle, and frequency;
for each line: 64×2 active/reactive power) are used to generate
4,531 (23×197) sets of data points of system events. To mimic
the realistic PMU data, the noise signal with a signal-to-noise
ratio of 92 dB [3] is appended to the synthetic simulated
PMU data for different events. For the statistical analysis,
Fig. 8 shows the actual start-time (the green arrow), start-time
detected by WED (purple arrows), and start-time detected by
DPSDT. All the start-times detected by DPSDT are plotted in
the blue histogram and the red distribution curve, respectively.
Similarly to the results in Section V-C, the DPSDT can
detect the bus fault events with a significantly high precision
(≈81.0333 s).

Table III compares the detected start-time information using
different methods, including PCA, WED, RQA, kNN, EMD,
and DPSDT. The real start-time of this event is at 81 s.
Measurements on Buses #101, #102, #151, and #152 are used
to testify the effectiveness of different methods. It is shown
that the developed DPSDT method detects the most accurate
start-time with the smallest time difference in the range of
0.0333–0.0416 s. For the PCA, WED, kNN, and EMD, the
time difference is in the range of 0.09–0.2233 s, which is
relatively larger than that detected by DPSDT. The moving
window in these methods is set as 16 samples (≈0.1333 s).
The RQA method detects the largest time difference 0.2567 s.
This is because RQA quantifies the number and duration of
recurrences of a dynamical system [16] and a longer moving
window is set as 20 samples (≈0.1667 s).

Fig. 9 compares the efficacy of fault clearance using DPSDT
and WED methods on five representative buses, respectively.
By using the detailed start-time information provided by
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TABLE III
COMPARISON OF START-TIME DETECTED BY DIFFERENT METHODS

WITH THE REAL START-TIME AT 81 S

Methods #101 #102 #151 #152

PCA 81.09 81.09 81.09 81.2233
WED (wavelet) 81.09 81.09 81.09 81.09

RQA 81.2567 81.2567 81.2567 81.2567
kNN 81.09 81.09 81.09 81.2233
EMD 81.09 81.09 81.09 81.2233

DPSDT 81.0333 81.0333 81.0333 81.0416

(a) Voltage with a fault on Bus #101 (b) Voltage with a fault on Bus #101

(c) Frequency with a fault on Bus
#101

(d) Frequency with a fault on Bus
#101

(e) Voltage with a fault on Bus #202 (f) Voltage with a fault on Bus #202

Fig. 10. Comparison of NWE metrics for the voltage and frequency data
with a bus fault using: WED (left column) and DPSDT (right column).

DPSDT, the bus faults are cleared instantly (in ∆t≈81.0333-
81=0.0333 s) with slight fluctuations for both voltage and
frequency data, which can contribute to the stable operations
of power systems. For the start-time information provided
by WED, the bus faults are cleared in ∆t≈81.09-81=0.09
s, which is a longer time delay and renders both voltage
and frequency data much more fluctuating. This phenomenon
makes it challenging to apply WED into power systems,
specially for the wide-area protection [30] and closed-loop
control [31].

Fig. 10 compares NWE metrics for the voltage and fre-
quency data using WED and DPSDT methods. The bus faults
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are set on Bus #101 (the 1st bus) in Figs. 10a–10d and
Bus #202 (the 8th bus) in Figs. 10e–10f, respectively. For
all cases, both WED and DPSDT are capable of identifying
the outliers in NWE around the 81st second, whereas the
proposed DPSDT method can explicitly detect the bus fault
event (see the blue area in Fig. 10) without the impact of
irregular NWEs under normal conditions. Another interesting
finding is that it is possible to expand the DPSDT method as
a PMU-based fault location technique. Compared Figs. 10a
and 10c with Fig. 10e, the NWE metrics calculated by WED
do not present evident distinctions on different system buses.
Thus, it is still challenging for operators to know where the
bus fault is located. This is because the WED method can only
characterize abrupt changes with large magnitude in wavelet
coefficients, but it cannot quantify the level of each abrupt
change by just shrinking the noise. Unlike the WED, DPSDT
is able to highlight the data with events and totally neglect
the data noise. As can be seen in Figs. 10b and 10f, the
fault events cause the electrical signals on the faulted bus with
the largest NWE value, which is vividly characterized by the
proposed DPSDT method. Hence, the location of a faulted bus
is successfully identified based on the PMU data.

For a better illustration, Fig. 11 shows all the NWE metrics
of the voltage data for bus faults separately simulated on
each bus at time 81.0333 s. It is shown that NWE metrics
of most buses, where the fault event is not simulated, are
approximately 20. For the NWE metrics that are approximately
50, it is readily used to identify the faulted bus. Taking the
red dashed line as an example, a bus fault is simulated on Bus
202 (the 8th bus). The NWE based on the DPSDT accurately
illustrates the eighth bus with the largest value (≈50).

To analyze the impact of ambient noise, the measured
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Fig. 13. Empirical distributions for up- and down-strokes of PMU-based
events. The superimposed blue line shows the mean histogram of averaging
over every bus fault event (totally 23) and sampling channel (totally 197).
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Fig. 14. Joint distributions of magnitude and duration for up- (left) and down-
strokes (right).

voltage and frequency data is assumed to be corrupted by
a Gaussian noise with zero mean and multiple standard de-
viations (0.00005, 0.0005, 0.001, 0.002, and 0.003). Fig. 12
shows the impacts of different ambient noise on the event
start-time using WED and DPSDT. As can be seen, the start-
time detected by WED (dashed blue and yellow lines) is
significantly sensitive to the ambient noise with the large and
fluctuating distance to the real start-time (dashed red line).
The corresponding time delays are distributed from 0.09 s to
1.15 s. However, the start-time detected by WED (solid green
and orange lines) is relatively robust to the ambient noise with
a very close distance to the real start-time (dashed red line).
Also, the corresponding time delays are significantly reduced
and distributed from 0.0333 s to 0.1578 s. This observation
can validate the robustness of the developed DPSDT method
to the ambient noise.

For the total 23 bus faults separately simulated on each
bus, the developed DPSDT method is run for each electrical
signal. A total of 4,531 PMU-based events are detected to

TABLE IV
TIME DELAYS COMPARISON OF A FAULT EVENT ON BUS #101 USING

DPSDT AND WED

Type of Time Delays WED DPSDT

Algorithm-Related Delay Computational Delay [s] 0.0296 0.0264

Processing Delay [s] 0.0114 0.0108

Total Time Delay [s] 0.079 0.0752

Estimated Start-Time of Event [s] 81.09 81.0333

Time Instant of Control Actions [s] 81.169 81.1085

form the empirical distributions. Fig. 13 shows the strokes
statistics of 23 fault events. The mean magnitudes of up- and
down-strokes are 0.8846 p.u. and 0.8785 p.u., respectively.
The mean durations of up- and down-strokes are 0.2296 s
and 0.2322 s, respectively. The up-stroke magnitude presents
a higher peak than the down-stroke, and the up-stroke duration
presents a lower peak than the down-stroke. Fig. 13 also shows
the individual empirical distributions of the stroke magnitude
and duration for each bus fault event (23 distributions and
one averaging distribution in each sub-figure). Note that in
each sub-figure the distribution shapes among various PMU
channels present the consistency due to the same type of bus
faults. Statistical results with quantiles of these distributions
can be used to judge whether a PMU-based event is a bus-
fault event or a non-bus-fault event. Fig. 14 shows the joint
distributions of magnitude and duration for up- and down-
strokes. The joint distributions of magnitude and duration
show two clear clusters at the bottom right corner of each
figure. It can be seen that there is less dependence between
stroke magnitude and duration. The distinct mode of stroke
magnitude is located in the range of 0.9–1.0 p.u., and the
distinct mode of stroke duration is located in the range of 0–0.6
s. This information can also be statistically used to predefine
the PMU event rules introduced in Section III-A.

E. Analysis of Time Delays

1) Algorithm-Related Delay: Taking the fault event on Bus
#101 as an example, Table IV shows different types of time
delays in the simulated Siemens PSS/E 23-bus system. The
algorithm-related delay consists of the computational delay
and the processing delay. Here, the computational delay is
mainly caused by the computational time for running one
algorithm, while the processing delay is caused by finding
the end-time of the first stroke/interval. As can be seen, the
computational time (delay) of both methods is in the range
of 260–300 ms. Moreover, the computational delay caused by
DPSDT is slightly smaller than that caused by WED. Also,
the processing delay using DPSDT is slightly smaller than that
using WED.

2) PMU Communication Delay: The PMU communication
delay is mainly caused by the latency of fiber optic digital
communication. The Bonneville Power Administration (BPA)
system has reported the typical PMU communication delay
as approximately 38 ms [32], [33]. In this paper, we assume
that DPSDT and WED algorithms are with the same PMU
communication delay, i.e., 0.038 s. The total time delay is the
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TABLE V
NUMERICAL RESULTS USING WED AND DPSDT WITH AND WITHOUT

CONSIDERING TIME DELAYS

Metrics WED DPSDT Difference

W/O Time Delays

ROLV [%] 52.17 0.00 52.17

ROLF [%] 60.87 0.00 60.87

MTMV [s] 0.5663 0.4275 0.1388

MTMF [s] 0.3446 0.2087 0.1359

With Time Delays

ROLV [%] 78.26 39.13 39.13

ROLF [%] 100.00 17.39 82.61

MTMV [s] 0.6620 0.5540 0.1080

MTMF [s] 0.4489 0.3297 0.1192
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Fig. 15. Comparison of the fault clearance using WED and DPSDT on five
representative buses considering time delays.

sum of the algorithm-related delay and the typical PMU com-
munication delay. As shown in Table IV, the total time delays
of DPSDT and WED are 0.079 and 0.0752, respectively.

3) Benefit Analysis Considering Time Delays: To evaluate
the benefit of real-time control considering time-delays, the
case study in Section V-D is performed. The real start-time of
this event is preset at 81 s. The start-time of events using WED
and DPSDT is estimated at 81.09 s and 81.0333 s, respectively.
The time instant of real-time control actions is the sum of
the estimated start-time of events and the total time delay. As
shown in Table IV, after considering the total time delay, the
real-time control actions using WED and DPSDT are applied
on time instants of 81.169 s (=81.09+0.079) and 81.1085 s
(=81.0333+0.0752), respectively.

Fig. 15 compares the fault clearance process using WED and
DPSDT on five representative buses considering the impact
of time delays. By using the control action time provided by
DPSDT, bus faults can be cleared with more slight fluctuations
for the voltage data. This observation is similar with that in
Fig. 9 where time delays are not considered. For the sake of
numerical analysis, Table V shows the metrics using WED
and DPSDT with and without (W/O) considering time delays.
As can be seen, for both cases with and without considering

TABLE VI
FAULT TYPES IDENTIFICATION

Fault Types Abrupt Change on
Voltage Data

Abrupt Change on
Frequency Data

But Fault 8 8
Line Outage – 8

Generator Outage 8 –

time delays, all the four metrics, including ROLV , ROLF ,
MTMV , and MTMF , are reduced due to using the more
accurate start-time information provided by DPSDT. Partic-
ularly, there are not any buses with out-of-limit voltage and
frequency using DPSDT, i.e., ROLV =0% and ROLF=0%.
Another interesting finding is that all the four metrics are
increased considering time delays. Also, this observation is
consistent with that in Fig. 15.

The benefits of using DPSDT are still very desirable even if
time delays are considered. To evaluate this, the difference of
metrics using WED and DPSDT are also calculated in Table V.
For the difference of ROLV , MTMV , and MTMF , the
benefits of using DPSDT are slightly reduced but still desir-
able when considering time delays. However, for the ROLF
metric, the benefit of using DPSDT is slightly increased from
60.87% to 82.16%. This is mainly because the overall buses
violate the frequency limitation using WED when time delays
are considered, i.e., ROLF=100%, while only 17.39% of
buses are out-of-limit using DPSDT.

F. Fault Types Identification and Location

To identify the specific fault type and its location, one line
outage and one generator outage are simulated on the Siemens
PSS/E 23-bus system in Section V-D, respectively. The line
outage is set on Line 151–152, and the generator outage is
set on the generator connected with Bus 3018. The 23-bus
system topology can be seen in [3]. Fig. 16 shows the results
of NWE metrics for the voltage and frequency data with one
line outage and one generator outage, respectively. For the line
outage, there are several abrupt changes of NWE metrics in the
frequency data, while the voltage data is without any abrupt
change. For the generator outage, there are two abrupt changes
of the voltage data on two buses: one connected with the
generator and the other one connected with the corresponding
transformer, while the frequency data is without any abrupt
change. However, for the bus fault in Fig. 10, there is only
one abrupt change in both frequency and voltage data. This
finding can be used to identify the specific fault type as shown
in Table VI.

By using the developed DPSDT method, the event can also
be located. For the bus fault, there is only one abrupt change
on the bus where the bus fault occurs. For the line outage,
there is the largest difference between the NWE metrics of
frequency data on Bus 151 and that on Bus 152 in Fig. 16b.
This is mainly caused by the outage on Line 151–152. For
the generator outage, there two abrupt changes of the NWE
metric of voltage data on Bus 3018 and Bus 3008 in Fig. 16c.
This is mainly caused by the outage of generator connected
with Bus 3018.
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(a) Voltage data with an outage on
Line 151–152

(b) Frequency data with an outage on
Line 151–152

(c) Voltage data with an outage of
generator connected on Bus 3018

(d) Frequency data with an outage of
generator connected on Bus 3018

Fig. 16. Comparison of NWE metrics for the voltage (left) and frequency
(right) data with one line outage and one generator outage.

G. Impact of Thresholds on the Detection Accuracy for Dif-
ferent Types of Events

Fig. 17 compares the impacts of different thresholds with
a fault on Bus #101 and an outage on Line 151–152. Three
threshold coefficients φmag and φslo of -10%, 10%, and 50%
are used to get different threshold values based on (3) and (4).
As shown in Figs. 17a and 17b, the negative φmag and φslo
(-10%) significantly impact the detection accuracy with five
and four false alarm events for the bus fault and line outage,
respectively. The appropriate φmag and φslo (10%) can detect
the accurate events without any false alarm or missed events
in Figs. 17c and 17d. However, when φmag and φslo increase to
50%, one upward stroke is missed in Fig. 17e, and both upward
and downward strokes are missed in Fig. 17f. Compared with
the bus fault, this is mainly because the line outage causes
a relatively small oscillation of voltage, which is relatively
sensitive to the thresholds of DPSDT.

VI. CONCLUSION

In this paper, we developed a novel PMU-based event
detection method by using the swinging door trending (SDT)
compression method and dynamic programming. The SDT
method for data compression is first used to compress the
real-time PMU data into multiple compression intervals by the
tunable door width parameter. Then dynamic programming is
utilized to solve an optimization problem, which is recursively
constituted by a score function. Adjacent compression inter-
vals with the same slope direction are merged and detected
based on predefined PMU event rules. Compared with the con-
ventional wavelet-based event detection (WED) method, the
effectiveness of the developed dynamic programming based
SDT (DPSDT) method is verified by numerical simulations on
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(b) Line outage with φmag=-10% and
φslo=-10%
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(c) Bus fault with φmag=10% and
φslo=10%
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(d) Line outage with φmag=10% and
φslo=10%
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Fig. 17. Comparison of the impacts of thresholds with a fault on Bus #101
(left) and an outage on Line 151–152 (right).

real and synthetic PMU data. Some observations are shown as
follows:

(i) The developed method is able to clearly present the
significant changes of both decomposition coefficients
and the normalized wavelet energy (NWE) metric.

(ii) The detailed start-time and placement information of a
PMU event can be precisely detected based on data of a
high reporting rate using DPSDT.

(iii) PMU event features, including the magnitude and dura-
tion, are all characterized and fault events can be instantly
cleared by using the developed DPSDT since the start-
time of the event is precisely identified.
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